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ABSTRACT. The cover time of d-branching random walk on the first n levels of a
d-regular tree is a.s. n−O(logn).

1. INTRODUCTION

The cover time of simple random walk on finite graphs is well studied and has
many algorithmic applications [1]. Consider branching random walk(BRW), where
each particle branches to d independent particles each jumps to a uniformly chosen
neighbor. The speed of BRW on Z is well studied subject started with several
papers by Biggins, see e.g. [4]. Hopefully (or maybe already) BRW can have some
algorithmic uses too.

It is easy to see that if G is a finite graph with a uniform bound on the degree,
then a.s. the cover time of d-BRW, d ≥ 2, is proportional to the diameter with a
constant depending only on the degree see e.g. the arguments in [2].

The theorem below implies that if the branching d ≥ 2 is at least the maximal
degree, then with high probability the cover time equals the radius of the graph
up to lower order corrections.

Theorem. Let d ≥ 2, and examine a d-BRW on a d-regular tree. Then a.s. it covers up to
time n a complete subtree of height n−O(log n).

Note that for (d−ε)-BRW, the cover will take time Cnwith C > 1, for any ε > 0.

Possible generalizations are to consider asymptotic cover time of tree indexed
random walk on trees, where the time tree has branching number d, and the space
tree admit branching number d′. See [2] for the study of tree index random walks
and the book [5] for background. Variants of branching random walk and tree
index random walks were used in [3, 6] to study embedding of trees into graphs..

A natural tree to consider is that of critical branching process conditioned upon
surviving.

2. PROOF

Proof. Examine the number of walkers at the starting vertex (which we nickname
“the root”) at even times. Clearly the expected number of walkers multiplies by
d at every step (step being t → t + 2). Therefore, by the a.s. exponential growth
of supercritical branching process conditioned on surviving, with positive proba-
bility, after T := bC log nc steps one has n4 walkers at the root. Examine now the
trajectory of these walkers. Assume that at time t there are k(v) walkers at a node
v, and let w be a neighbor of v. Then for some C1, c2 > 0

P(there are k(v)− λ
√
k(v) walkers at w at time t+ 1) ≤ C1e

−c2λ2

.
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Setting λ = C
√
n for some sufficiently large C gives that this probability is so

small that by summing the probabilities this event never happens for any t ≤ n
with probability going to 1, for any v in the tree. Conditioned on the event that
for all v, for a sequence of k(v)′s that be determined below, this implies that the
number of walkers at a node in height h at time T + h is bounded below by ah
defined by

a0 = n4 ai = ai−1 − C
√
nai−1.

A simple induction shows that ah ≥ 1
2h

4 for all h ≤ n and n sufficiently large, we
are done. �

Remark. For a d + 1-branching walk on a d-regular tree, the subtree covered is in
fact n − O(1). The proof is similar, but it is enough to initialize the process with
Cd4 walkers in the root (rather than n4) — the ai-s would satisfy ai = ai−1(1 +

1/d)− C
√
dai−1 and it is again easy to see that ai →∞.

REFERENCES

[1] D. Aldous and J. Fill, Reversible Markov Chains and Random Walks on Graphs, Book in prepara-
tion, (2001).

[2] I. Benjamini and Y. Peres, Markov chains indexed by trees. Ann. Probab. 22 (1994), no. 1, 219–243.
[3] I. Benjamini and O. Schramm, Every graph with a positive Cheeger constant contains a tree with

a positive Cheeger constant. Geom. Funct. Anal. 7 (1997), no. 3, 403–419.
[4] J. D. Biggins Chernoff’s theorem in the branching random walk. Journal of Applied Probability, 14,

(1977), 630–636
[5] R. Lyons and Y. Peres, Probability on trees and netwroks, Book in preparation, (2006).
[6] B. Sudakov and J. Vondrak, Nearly optimal embeddings of trees,

http://front.math.ucdavis.edu/0707.2079 (2007)


